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A B S T R A C T

Ants are increasingly being recognized as useful tools for land managers to monitor ecosys-

tem conditions. However, despite an abundance of studies on ant responses to both envi-

ronmental disturbance and land management techniques, an analysis of the practice and

value of including ants in monitoring is lacking. Consequently, conservation managers are

left with little guidance as to if, when, and how ants can be used to assess conservation

activities. Based on our review of approximately 60 published studies, we outline five areas

where ants provide valuable information for management-based monitoring: (1) to detect

the presence of invasive species, (2) to detect trends among threatened or endangered spe-

cies, (3) to detect trends among keystone species, (4) to evaluate land management actions,

and (5) to assess long-term ecosystem changes. We also discuss practical considerations

when designing a monitoring framework for ants, including appropriate methods,

taxonomic resolution for sampling, and spatial and temporal scale. We find that when inte-

grated with management goals, monitoring ants can provide information over the short-

term on topics such as the status of invasive or keystone species, as well as over longer

time frames, for instance the impact of climate change. Overall, we conclude that ants

merit monitoring based on their inherent ecological qualities, independent of any ‘‘indica-

tor’’ attributes they might have.

� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Given the ubiquitous nature and pivotal role of invertebrates in

many ecosystems (Hölldobler and Wilson, 1990; Andersen and

Lonsdale, 1990; Wilson and Hölldobler, 2005), land managers

have expressed considerable interest in using invertebrates

for ecosystem monitoring. Invertebrate populations can regis-

ter the short-term impact of land management techniques

and restoration efforts, as well as indicate longer-term general

ecosystem change, such as restoration of mine sites or climate

change (e.g., McGeoch, 1998; Parmesan et al., 1999; Bisevac and

Majer, 1999; York, 2000). However, despite recognition that
er Ltd. All rights reserved

; fax: +1 530 752 3350.
vis.edu (E.C. Underwood
monitoring invertebrates is an important endeavor, widely

accepted by national and international funding agencies,

monitoring efforts have rarely generated returns commensu-

rate to their investment. All too frequently insect monitoring

lacks both specific goals and a framework detailing how results

will be integrated into management decision making.

In this study we focus on the role of ants in monitoring.

In contrast to surveying, which represents the ant fauna at

one snapshot in time, monitoring refers to repeated sam-

pling over time to identify population patterns. These pat-

terns, in turn, help to inform specific management

questions. Ants are considered particularly useful for moni-
.
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toring for a number of reasons. They are abundant and ubiq-

uitous in both intact habitat and disturbed areas (Majer,

1983; Andersen, 1990; Hoffmann et al., 2000), sampling is rel-

atively easy without requiring enormous expertise (Greens-

lade and Greenslade, 1984; Fisher, 1999; Agosti and Alonso,

2000), and ants have proven sensitive and rapid responders

to environmental variables (Campbell and Tanton, 1981; Ma-

jer, 1983; Andersen, 1990). Moreover, ants are important

functionally at many different trophic levels (Alonso, 2000),

and play critical ecological roles in soil turnover and struc-

ture (Humphreys, 1981; Lobry de Bruyn and Conacher,

1994), nutrient cycling (Levieux, 1983; Lal, 1988), plant protec-

tion, seed dispersal, and seed predation (Ashton, 1979; Beat-

tie, 1985; Christian, 2001). Together, these qualities suggest

ants merit monitoring for their own sake, as they provide

high information content about an ecologically and numeri-

cally dominant group.

However, land managers and conservation practitioners

still lack a clear understanding about if and when ants can

be employed as taxa for monitoring, as well as how these in-

sects can inform conservation decisions. Here, we illustrate

the role of ants as a tool for management-based monitoring

and provide practical guidelines to assist in designing an

effective and efficient monitoring framework. More specifi-

cally, we propose five areas in which ants can be reliably em-

ployed for monitoring: (1) to detect presence of invasive

species; (2) to detect trends among threatened or endangered

species; (3) to detect trends among keystone species; (4) to

evaluate land management actions; and (5) to assess long-

term ecosystem changes.

2. Approach

We first review the techniques available for sampling ants and

then present rationales for using ants in the five areas out-

lined. We selected approximately 60 published studies from
Table 1 – Suggested uses of ants in monitoring and effective s

Monitoring goal Example M
ti

Detect presence of invasive

species

Linepithema humile, Solenopsis

invicta, Pheidole megacephala

Im

Detect population trends of

threatened or endangered

species

Endemic species in Mauritius,

e.g., Acropyga dodo, Pristomyrmex

bispinosus

Me

Detect population trends of

keystone species

Seed dispersers, butterfly

mutualists, fungus growing

attines

Me

Evaluate land management

decisions

Logging, grazing, mine

restoration, prescribed fire

Me

Assess ecosystem change Trends in dominant or abundant

species to evaluate the impact of

climate change

Lo

Monitoring time frame refers to the minimum duration of monitoring bef

the examples given. Direct observation includes colony observation and
a variety of ecosystems by searching the literature and sum-

marized each paper by the sampling goal, habitat, location,

sampling method, and the responses of community variables

reported (i.e., species richness, diversity, abundance, and use

of functional groups).

2.1. Overview of ant sampling techniques

A critical issue associated with invertebrate monitoring is

determining the sampling method most appropriate for the

management goal, target taxa, and habitat. Sampling meth-

ods do not collect all species equally well and vary in effec-

tiveness according to habitat (Longino and Colwell, 1997;

Fisher, 1999, 2005; King and Porter, 2005). Ants nest and forage

in soil, litter, rotting wood, and on ground surfaces and vege-

tation. Understanding nest site locations and habitat prefer-

ences help determine the probability of capturing a species

with a given type of sampling method.

The type of sampling required for the purposes of a ‘strict’

inventory designed to develop an accurate species list is very

different than an inventory aiming for ‘community character-

ization’ (Longino and Colwell, 1997). Monitoring activities are

generally concerned with the latter – seeking data on species

richness, abundance, and complementarity (turnover). While

a variety of sampling techniques can yield this information,

some techniques have proven superior for specific case sce-

narios (Table 1). These approaches should be refined based

on field trials in a given habitat and an evaluation of the num-

ber or type of species obtained based on a standardized sam-

pling unit or individuals collected.

Ant sampling techniques are categorized as either passive

or active (see Bestelmeyer et al., 2000 for a full review). Passive

techniques include pitfall trapping, which involves inserting a

number of open containers flush with the ground; these are

often filled with a preservative liquid and left for a specified

time. Effective for capturing species foraging on the surface
ampling methods

onitoring
meframe

Field methods

Pitfalls Litter Bait Direct
observation

mediate Y Y

dium-term Y (epigeic

species)

Y (litter

species)

Y

dium-term Y (seeds) Y

dium-term Y (if low litter) Y

ng-term Y (if low litter) Y Y

ore results address specific goals. Methods shown are appropriate for

hand collections, (Y = yes).
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or in the soil, passive techniques also require relatively inex-

pensive equipment (King and Porter, 2005; Fisher, 2005). How-

ever, a well recognized consideration with pitfalls is the

increased proportion of ground dwelling (epigeic) ants cap-

tured with the reduction in litter and vegetation biomass

(Melbourne, 1999; Fisher and Robertson, 2002). Leaf litter sam-

pling is another popular passive technique, involving the col-

lection of litter within a quadrat (e.g., 1 m · 1 m; Fisher, 1999).

The litter is placed into Winkler extraction sacks or a Berlese

Funnel with a light source to collect the ants. Like pitfall

traps, leaf litter sampling provides information on species

richness, composition, relative abundance and frequency

(Bestelmeyer et al., 2000). Litter sampling has proven superior

in closed canopy habitats where leaf litter is moist and abun-

dant compared to drier environments (Fisher, 1999, 2005;

Fisher and Robertson, 2002; King and Porter, 2005). King and

Porter (2005) evaluated pitfall traps, leaf litter, Berlese funnel

extraction, and hand collecting across five different ecosys-

tems in Florida. The authors found pitfall traps and litter

samples captured a similar number of species and predicted

69% and 61% respectively of total site species richness.

Techniques such as baiting can provide information on

species richness, abundance, and composition in an area,

although results are often biased to trophic generalists (Roth

et al., 1994; Bestelmeyer et al., 2000) and dependent on the

type of bait used. King and Porter (2005) found baiting to be

the least productive method for capturing species richness,

predicting only 46% of total site species richness. In addition,

baiting may overlook dominant elements of the community,

such as attine fungus growing ants, which are not attracted

to baits (King, J., personal communication).

Active techniques include direct sampling or colony sam-

pling. These techniques are reported to be the most efficient

method to capture maximum species richness (King and Por-

ter, 2005), since microhabitats and non-epigeic ants (such as

arboreal ants) can be targeted. However, it is time intensive

and requires far more operator expertise compared to passive

sampling approaches, making repeated sampling for moni-

toring purposes potentially problematic.

2.2. Practical considerations of cost, time, and processing

The cost and logistics of including ants in a monitoring pro-

gram are vital considerations for land managers and conser-

vation practitioners. The financial cost of collecting

equipment and the time invested differs with technique; for

example, litter samples take more time to collect, sort and

process compared to pitfall traps and baits (King and Porter,

2005).

Beyond the effort to collect the samples, sorting vast num-

bers of often unidentifiable species can make the task of post-

collection processing formidable (Spellerberg, 1991; Samways,

1994; Fisher, 2005). Specimen processing is often more costly

than collecting because it frequently requires an investment

in taxonomic training (Fisher, 2005). Consequently, monitor-

ing efforts that include a range of arthropods often fail be-

cause of the significant bottleneck of identifying specimens.

A number of strategies can reduce the cost and effort involved

in identifying specimens (Trueman and Cranston, 1997;

Fisher, 2005). For example, processing efficiencies in terms
of time, cost, and expertise can be achieved by sorting ants

to morphospecies based on external morphology than to

named species using taxonomic keys (Cranston and Hillman,

1992; Beattie and Oliver, 1994; Oliver and Beattie, 1996). The

use of higher taxon surrogacy is another technique that

avoids the complexities of species level taxonomy. Surrogacy

is based on the premise that numerous species of a single

genus frequently co-occur. Ant genera are also much easier

to identify than species which vary with each site and study

(Greenslade, 1978; Andersen, 1995a). Aligned with this is the

functional group approach which defines ants according to

responses to environmental stress and disturbance (Ander-

sen, 1995b). The response of these groups to disturbance

has been found to be predictable in Australia (e.g., Vanderwo-

ude et al., 1997) and, to some extent, elsewhere (Gomez et al.,

2003; Izhaki et al., 2003). For example, Dominant Dolichoder-

inae and Opportunists increase at low to moderate levels of

disturbance owing to their preference for more open habitats,

while more specialized groups such as Cryptic species and

Specialized Predators are often absent following ecological

disturbance. Other groups include Generalized Myrmicinae,

occurring across many habitats with relatively unspecialized

requirements, and Hot Climate Specialists adapted to arid

conditions (Jackson and Fox, 1996; Hoffmann and Andersen,

2003).

Recent research suggests DNA sequence analysis is a

promising tool to monitor species rich taxa such as ants.

Smith et al. (2005) conclude that ant diversity identified

using a standardized short gene sequence (mitochondrial

DNA barcode) provides a surrogate for traditional morpho-

logical species. They show that the sequence of cytochrome

oxidase I, or cox1, can rapidly identify units of diversity by

grouping specimens with similar cox1 sequence, into molec-

ular operational taxonomic units (MOTU). DNA sequencing

is both rapid and scalable to a great number of samples,

thus allowing the identification of species in widespread,

high volume monitoring programs, even for groups that lack

taxonomic experts.

While many of these approaches for sampling communi-

ties seek to avoid the intricacies of species level taxonomy

combined with the increasing availability of web-based ant

identification tools (see www.antweb.org), it is highly likely

that taxonomic expertise will be needed at some point to en-

sure a successful monitoring program. This is the major dif-

ference between surveying easily identifiable groups, such

as birds, and many arthropod groups. The level of taxonomic

involvement will also depend on the monitoring goals. If a

single invasive species is being monitored, very little exper-

tise will be needed. However, if a rare or endangered, difficult

to identify ant is the target or a program involves monitoring

diverse assemblages, in-depth taxonomic knowledge will be

required. Once an inventory is complete, a reference collec-

tion should be made of voucher specimens from the site that

are identified and verified by an expert, and deposited in a

natural history museum (Fisher, 2005).

3. Rationale for monitoring ants

We present five areas where ants can provide information for

management-based monitoring, suggest appropriate sam-

http://www.antweb.org


Table 2 – Summary of ant sampling and monitoring studies (Matlock and de la Cruz, 2003; Nash et al., 1998; Parr et al.,
2002; Peck et al., 1998; Read and Andersen, 2000; Woinarski et al., 2002)
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Table 2 – continued
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Table 2 – continued
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Table 2 – continued
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Variables are in response to the application of ants as indicators as described in column 1. Blank cells indicate no information was reported for

that measure in the study. Numbers in parentheses refer to items listed in Description of Study column.

Codes are as follows:

1 Species richness and diversity (H): 0 = no change, + = increase or greater, � = decrease or less.

2 Species abundance: 0 = no change, + = increase or greater, � = decrease or less, D = presence of dominant species recorded, T = presence of

tramp species recorded.

3 FG = Functional group: Y = used and performance was predictable; N = used but performance was unpredictable or inconsistent.

4 Sampling method: P = Pitfalls, L = Litter extraction, Bait = Baits, GC = General collecting, S = Visual surveys, Beat = Beating, Fog = Fogging,

Tull = + Tullgren Funnel, Mal = Malaise Trap, Berl = Berlese Funnel.
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pling techniques, and summarize findings from pertinent

studies (Table 2). Many of the studies represent surveys rather

than monitoring efforts and often lack the temporal compo-

nents or management goals of an effective monitoring pro-

gram. To be valuable, a range of variables should be

monitored, and then used to inform the development of

hypotheses to test questions that directly relate to manage-

ment. Nevertheless, these studies provide a valuable resource

for determining appropriate methods and insights into the

variation of recorded responses.

3.1. Detecting the presence of invasive species

One of the simplest and most effective uses of ants is to ob-

serve the general ecosystem condition by recording the pres-

ence or absence of invasive or native ‘weedy’ ants. For this

purpose, sampling can focus on specific species through di-

rect collecting in habitats and microenvironments most likely

to harbor the target species. An additional advantage is

minimal expertise is required for identifying specimens if it

involves a few targeted species, such as the Argentine ant

(Linepithema humile).

Once invasive ants become established in natural ecosys-

tems, they are difficult, if not virtually impossible, to eradicate

(Holway et al., 2002). There are currently 147 known ant species

established outside of their native regions but only a few of

these have become successful invaders (Deyrup et al., 2000;

Suarez et al., 2005). These species have caused a range of im-

pacts including eliminating native ant diversity (McGlynn,

1999; Porter and Savignano, 1990; Holway and Suarez, 2006),

reducing insect and vertebrate populations, and altering plant

seed dispersal (Hölldobler and Wilson, 1990; Zettler et al., 2001;

Holway et al., 2002). The vulnerability of an ecosystem to inva-

sion depends on its physical environment, history of anthro-
pogenic disturbance and fragmentation (Suarez et al., 1998;

Forys et al., 2002; Holway et al., 2002; Suarez et al., 2005). Insu-

lar systems, such as Christmas Island (O’Dowd et al., 2003; Ab-

bott, 2005, 2006), Hawaii (Lach, 2005), and Mauritius (Fisher,

2005), appear most vulnerable to ‘meltdown’ due to supercol-

onies of invasive ants aided by introduced mutualists.

Several non-native and native weedy species have been

proposed as potential candidates for monitoring post-distur-

bance conditions in some ecosystems. Logging roads and

tracks in the Amazon have been associated with non-forest

species such as Ectatomma brunneum (Vasconcelos and Cher-

rett, 1995; Vasconcelos et al., 2000). Cleared rain forest sites

in Queensland, Australia were characterized by the presence

of the tropical tramp species Pheidole megacephala (King et al.,

1998). Rehabilitated mine sites in northern Australia were re-

ported to have a high abundance of weedy species of Paratre-

china (Andersen et al., 2003). Fragmented coastal scrub

communities in southern California have been associated

with the abundance of the invasive Argentine ant (Linepit-

hema humile) (Suarez et al., 1998). In a study of dry forest

fragments in Colombia, Armbrecht and Ulloa-Chacón (2003)

reported the lowest number of ant species in fragments

which were dominated by the little fire ant (Wasmannia

auropunctata).

Appropriate techniques for sampling target invasive ants

include baiting, particularly if the food preference can be

identified, e.g., cookies or tuna for Argentine ants. Placement

of baits should consider the nesting, foraging, and behav-

ioural traits of the invasive ants. Alternatively, recording col-

ony nests would be effective where colonies have a distinctive

structure, as with fire ants (Solenopsis invicta), and the spatial

spread of colonies can be mapped over time. Sampling would

need to be undertaken at regular intervals to detect change

and at a similar time every year.
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3.2. Detecting trends among threatened and endangered
or keystone species

Monitoring a single species of ant is also recommended where

ants perform keystone roles in the ecosystem. For example,

ants associated with butterflies have become a flagship for

conservation in Europe (Erhardt and Thomas, 1991; Elmes and

Thomas, 1992; Pierce et al., 2002). Most species of large blue,

Maculinea, are highly specific with respect to their Myrmica ant

associates (Als et al., 2004). The obligate, host-specific aspects

of this association have been invoked to explain the threatened

conservation status of most Maculinea species (Pierce et al.,

2002) and highlight the need to monitor both the butterfly and

ant populations (Thomas, 1995; WallisDeVries, 2004).

Ants are also important in the dispersal of seeds, a wide-

spread phenomenon documented in more than 70 plant fam-

ilies that is most abundant in Australia, South America and

the eastern deciduous forests of North America (Beattie,

1985; Hughes and Westoby, 1992). In addition to monitoring

the diversity or abundance (structure) of seed dispersers

(e.g., Majer, 1984a; Grimbacher and Hughes, 2002), one can

also monitor the ecosystem function performed. Thus for seed

dispersers, a monitoring protocol that provided diversity and

abundance data across landscapes could be combined with

quantitative data on the performance of the seed dispersers

in each habitat. From a management perspective, the combi-

nation of methods may provide more predictive power about

land decisions than sampling alone (Hobbs and Norton, 1996).

Some researchers propose that monitoring rare species of

conservation concern (Samways, 1994, 2005) or sensitive spe-

cies such as specialized predators (York, 1994) is the best

means to evaluate the impacts of management activities. Col-

lection methods, however, such as direct sampling of pre-

ferred habitats, should be sensitive to the species in

question and should not jeopardize endangered or threatened

species (Fisher, 2005). For most of this class of monitoring,

taxonomic expertise will be required in both the monitoring

and identification stages.

3.3. Evaluating land management actions

We review studies which have used ants to assess the effects

of four types of management decisions and practices: logging,

grazing and agriculture, mine site restoration, and prescribed

fire. While some practices cause negative impacts on the eco-

system (e.g., reduction in vegetation diversity and structure)

they can also exert positive influences, such as increase the

influx of nutrients or the release of resources (van der Maarel,

1993; Whelan, 1995). Consequently, ant community responses

are highly variable, not necessarily intuitive, and serve to

emphasize the importance of sampling ants over a range of

variation in management practices.

In cases where land management practices have reduced

litter cover, as with grazing, pitfalls are a popular sampling

technique, utilized in 75% of the studies reviewed. In contrast,

where practices like logging have resulted in cleared areas of-

ten adjacent to closed canopy forest with substantial litter,

leaf litter samples would be a more appropriate method

(Fisher, 1999). Three of the four logging studies reviewed

incorporated litter sampling.
3.3.1. Logging
The impact of logging on the physical environment is deter-

mined largely by severity, which can range from clear-cutting,

to canopy thinning, to selective logging. An increase in canopy

openness and reduction in vegetation structure and under-

story plant richness can cause large changes for ant commu-

nities (Uhl and Vieira, 1989). For example, desiccation can

occur as greater sunlight and wind reach the forest floor: soil

temperature increases, mean relative humidity falls, and litter

moisture content decreases (Uhl and Kauffman, 1990). Tree re-

moval can also indirectly destabilize ant communities by

eliminating other invertebrates that provide reliable supplies

of food and moisture (Greenslade and Mott, 1979).

Studies on selective logging have recorded few measur-

able changes among ants. In the Amazon rain forest, there

was no significant difference in the overall number of spe-

cies, evenness, or mean abundance between plots that had

been logged for 10 and four years prior versus an unlogged

control (Vasconcelos et al., 2000). Even so, population densi-

ties of many ant species were still modified 10 years after

logging. Kalif et al. (2001) also compared areas of high and

low impact logging (categorized by percent canopy cover)

with an unlogged reference site in the Brazilian Amazon.

They detected no difference in ant species richness, only

in species composition – due to an interchange of species

more tolerant to habitat modifications. Low sensitivity to

selective logging was also recorded in tropical dry forests

of Madagascar, where neither the number of ant species

nor species composition were affected (Olson and Andriami-

adana, 1996). However, this study and Vasconcelos et al.

(2000) found that the presence of logging roads influenced

ant species abundance owing to high soil compaction. In

contrast to selective logging, studies on the effect of clear-

cutting on ant communities reported significant impacts.

Punttila et al. (1991) reported a reduction in wood ant spe-

cies in areas clear-cut 1–2 years prior to sampling compared

to mature boreal forest; the decreases were attributed to loss

of food resources.

3.3.2. Grazing
Grazing affects the abiotic environment by influencing soil

structure, increasing runoff, and decreasing infiltration capac-

ity (Abbott, 1989; Foster and Kettle, 1999). Biotic effects can be

indirect, such as simplifying above ground vegetation and lit-

ter, or direct, such as the removal of seed resources from the

environment (Greenslade and Mott, 1979; Hutchinson and

King, 1980). Three of the studies reviewed recorded a detri-

mental effect on ants. Abensperg-Traun et al. (1996) character-

ized remnant Eucalyptus salubris woodland disturbed by sheep

grazing and weed invasion, and recorded lower ant diversity in

highly disturbed remnants. Furthermore, the authors con-

cluded that the disturbance from grazing and trampling had

far greater negative influence on arthropod fauna than did

fragmentation. Miller and New (1997) reached the same con-

clusion – grazing impacts on the ant community outweighed

disturbances from exotic plant invasions in grasslands at

Mount Piper, Victoria, Australia. In a study across a grazing

gradient in the Argentine Chaco, Bestelmeyer and Wiens

(1996) reported lower ant species richness and other diversity

measures in sites with higher levels of disturbance from cattle



174 B I O L O G I C A L C O N S E R V A T I O N 1 3 2 ( 2 0 0 6 ) 1 6 6 – 1 8 2
and goat grazing (although this response was limited to

samples collected in the winter-dry season).

In contrast, numerous studies have found that grazing has

little or no measurable effect on ant species communities. Bes-

telmeyer and Wiens (2001) investigated grazing effects across

three sites: a shortgrass steppe, transitional zone, and desert

grassland in the Chihuahuan Desert, USA. Despite recording

substantial effects on soil properties and vegetation at all sites,

ant richness, diversity, and composition showed little re-

sponse to grazing except in the shortgrass steppe, where lower

overall richness and abundance of some species was observed.

A second study in the Chihuahuan Desert recorded no differ-

ence in the relative numbers of ant colonies in 11 pairs of tran-

sects; one of each pair had been grazed and the other located

within a livestock exclosure that had not been grazed for 11

years (Heske and Campbell, 1991). Whitford et al. (1999) tested

how well ants reflect livestock grazing disturbances in the des-

ert grasslands of New Mexico and Arizona, USA, as defined by

grass/shrub cover and bare patch size. They found ant commu-

nity composition, relative species abundance, and species

richness were the same on grazed and ungrazed sites. Simi-

larly, Kirkham and Fisser (1972) concluded that grazing caused

no significant change in abundance of harvester ant colonies

(Pogonomyrmex salinus) in northcentral Wyoming.

Four of the studies reviewed recorded increases in ant spe-

cies richness and/or abundance with livestock grazing. Brom-

ham et al. (1999) sampled invertebrates in 15 remnant patches

of Eucalyptus woodland in northern Victoria, Australia, di-

vided equally into ungrazed, grazed by sheep and/or cattle,

or pasture categories. Pitfalls recorded the highest relative

abundance of ants in pasture, intermediate levels in grazed

woodland, and lowest abundance in ungrazed woodland. In-

creases in ant community variables were also reported by Ma-

jer and Beeston (1996) in developing a biodiversity integrity

index for Western Australia, who found that ant species rich-

ness in heavily grazed was higher than in lightly grazed

rangeland. Similarly, Hutchinson and King (1980) recorded

greater ant abundance with increased sheep stocking rates

in pastures in New South Wales, Australia. In the Manbulloo

grazing trial, Northern Territory of Australia, Greenslade and

Mott (1979) recorded higher species richness and relative

diversity of ants in grazed versus ungrazed plots. This was ac-

counted for, in one instance, by Meranoplus spp. in heavily

grazed sites switching from a diet of grass seeds to insects

when cattle consumed up to 80% of the grass.

In summary, the studies reviewed illustrate that ant re-

sponses to grazing are highly variable, making generaliza-

tions difficult. Some of this variation may be the result of

sampling bias such as the use of pitfall traps which are more

successful in open environments after grazing. This variation,

however also reflects that the impact of grazing is a complex

interaction of the grazers, substrate, and habitat along with

species specific ant responses to these changes.

3.3.3. Mine site rehabilitation
The inclusion of ants to evaluate restoration efforts is another

focal area in which ant monitoring can inform management

decision making. The positive correlation of ants with soil

microbial biomass (Andersen and Sparling, 1997) makes them

particularly appropriate for assessing restoration and rehabil-
itation progress. We review studies relating to mine site reha-

bilitation and fire, the majority of which used pitfall traps as

the sampling method, yielding information on metrics such

as species richness, composition, abundance, and diversity

(Bestelmeyer et al., 2000).

The use of ant community responses to measure mine site

rehabilitation is well established; previous studies span a

range of habitats both in Australia and the USA (Majer and

Nichols, 1998; Anthony et al., 1991; Bisevac and Majer, 1999;

Andersen et al., 2003). The studies reviewed show a correla-

tion between ant community changes and time since rehabil-

itation. Bisevac and Majer (1999), in a comparison of seven

rehabilitation sites with three control heathland sites in Wes-

tern Australia, found ant species richness to be positively

associated with time since rehabilitation (ranging from two

to 20 years). Andersen et al. (2003) detected a similar increase

in species richness with rehabilitation age ranging from two

to 10 years, as did Jackson and Fox (1996), who reported that

species richness recovered rapidly to exceed controls in

mid-succession. In contrast to these three studies, which as-

sessed changes in impacts over time, Hoffmann et al. (2000)

used ants to indicate the severity of mining disturbance over

space, in the semiarid tropics of northern Australia. Ant

abundance and richness were negatively correlated with SO4

concentrations in the soil resulting from sulfur deposition

from mining emissions.

The recovery of ant functional groups at rehabilitation sites

often followed a predictable pattern, with specialist groups

such as Cryptic species and Specialist Predators remaining

suppressed for some time, owing to insufficient litter and a lack

of woody debris and logs (Andersen, 1993; Madden and Fox,

1997; Majer and Nichols, 1998). However, Hoffmann et al.

(2000), despite recording predictable responses to spatial vari-

ation in sulfur deposition at the species level (increases in Irido-

myrmex and Melophorus spp.), found no significant response at

the level of functional groups. The authors attributed this to a

lack of any major change in vegetation; open grasslands and

woodlands simply became more open which was insufficient

to cause changes at the broader functional group level.

Overall, the inclusion of ants in restoration studies is

highly recommended since it monitors for the return of a crit-

ical element of the ecosystem. Without inclusion, evaluating

whether restoration efforts succeed in achieving a function-

ing ecosystem is difficult. For example, efforts to restore

amphibians and reptiles in western USA should include na-

tive ants, since they provide a critical food source (Suarez

and Case, 2002).

3.3.4. Prescribed fire
Land management techniques often focus on restoring fire as

a landscape scale process to areas where it occurred histori-

cally. In addition, fire can be used as a restoration technique

to control invasive plants, remove woody shrubs, or encour-

age native species (Parsons and Stohlgren, 1989; Klinger and

Messer, 2001; Parsons and van Wagtendonk, 1996). However,

the effect of fire on the invertebrate community is not fully

understood and is further confounded by fire regime charac-

teristics such as frequency, seasonality, and intensity. Direct

impacts during the combustion stage are relatively small –

for example, only a portion of a colony is likely to be caught
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above ground, soil nests are generally very deep, and rocks,

downed wood, and soil cracks afford refuges during the fire

(Chew, 1960; Andersen and Yen, 1985; Warren et al., 1987;

Andersen, 1991). Indirect effects of fire are likely to be more

substantial; the removal of above-ground biomass modifies

food supply and nesting sites, while burned areas may expe-

rience increased insolation which might influence nest-site

temperature and foraging activity (Pontin, 1963; Andersen

and Yen, 1985; New, 2000).

A portion of the studies recorded significant changes in ant

species richness and diversity following fire (including wild

fires). In a series of 1 ha replicated plots in Eucalypt-domi-

nated savanna of tropical northern Australia, Andersen

(1991) found distinct differences between annually burned

plots (dominated by Hot Climate Specialists and Opportunistic

functional group species) versus plots unburned for over 14

years (characterized by high numbers of Generalized Myrmi-

cines and Cryptic species) – which was attributed to reduced

litter and increased insolation in burned environments. Izhaki

et al. (2003) observed similar modifications of functional

groups to fire in a longleaf pine savanna in Florida; Dominant

Dolichoderinae (e.g., Forelius pruinosus) exhibited large

increases six months after burning, causing the decline in

abundance of other species, such as Generalized Myrmicines.

Vanderwoude et al. (1997) in Eucalyptus forest in south east

Queensland, Australia, also found annually burned sites had

the highest relative abundance of Dominant Dolichoderinae

(Iridomyrmex spp.) compared to plots burned every two to

three years or unburned, although in this case Opportunists

(mostly Rhytidoponera) comprised the majority of ants at un-

burned rather than burned sites. Neumann (1991), studying

the effects of high intensity wild fire in a Eucalyptus regnans

forest east of Melbourne, Australia, found an increase in abun-

dance and dominance of the seed harvester Prolasius pallidus

for 12 months after the fire, followed by its gradual replace-

ment with Iridomyrmex foetans as the forest regenerated.

Andersen and Yen (1985) in a study of the immediate effects

of heathland wild fire in northwestern Victoria, Australia,

found the pre-fire dominants Iridomyrmex and Monomorium

dramatically reduced post-fire, suggesting competitive release

led to an increase in several previously uncommon species.

Experimental spring burns in an oak savanna in northern Cal-

ifornia resulted in significant changes in ant abundance one

year after burning, although no modification of species rich-

ness or frequency (Underwood and Christian, 2004).

In contrast, weak responses among ants have also been

recorded. Hoffmann (2003) sampling two years after experi-

mental fire regimes found ant species richness changed little

after different seasons of fire in rangelands of the Victoria

River District in summer monsoonal northern Australia. In a

coastal Eucalyptus forest in New South Wales, Australia, York

(2000) found overall richness of sites burned frequently over

the last 20 years similar to unburned sites owing to the

replacement of species not previously present.

Other studies revealed no response of ants to fire. For

example, Zimmer and Parmenter (1998) found the harvester

ant Pogonomyrmex rugosus exhibited no significant changes

in any variable both immediately after and one year following

an experimental fire in central New Mexico, USA. As with the

findings from the grazing studies, ant responses to fire are ex-
tremely variable. Differences in experimental design, habi-

tats, and ant assemblages mean general conclusions are

challenging to make.

3.4. Monitoring ecosystem change

Various techniques over multiple scales are employed to mon-

itor threats associated with anthropogenic disturbance. We

propose that ants should be routinely incorporated into a

monitoring framework to provide information on a taxon

encompassing multiple trophic levels, thereby providing an-

other dimension to habitat disturbance and threat assessment

for land managers. Monitoring for ecosystem change, such as

land conversion, requires investment in a long-term program

to yield results. To simplify the monitoring protocol and to re-

duce the effect of rarely collected species, we recommend that

a select group of the most dominant species be monitored.

Baiting offers an appropriate technique for sampling dom-

inant species, since the abundance of ant foragers at baits

may indicate ecological and behavioral dominance among

foraging species and provide a general measure of ant forag-

ing efficiency (Bestelmeyer et al., 2000). Alternatively, in open

habitats, pitfall traps provide a suitable method for sampling

dominant ants.

3.4.1. Land conversion and clearance
Ants have proven responsive to various types of land clear-

ance and conversion across a range of habitats. Land conver-

sion results in the loss of vegetation diversity and structure,

and modification of microclimate in terms of soil, litter char-

acteristics, downed wood, and soil surface temperature (Lev-

ings, 1983; Levin and Windsor, 1984; Lynch et al., 1988;

MacKay et al., 1991).

Many studies have documented changes in ant fauna when

tropical forest is converted to agricultural use. Vasconcelos

(1999) sampled a disturbance gradient from undisturbed ma-

ture forest, old and young regrowth, and abandoned pasture

in central Amazonia and recorded species richness in pasture

was half that of mature forests. Furthermore, less than a third

of the species in the converted pasture were mature forest

species. Roth et al. (1994) sampled across a continuum of dis-

turbance ranging from primary forest, to abandoned cocoa,

productive cocoa, and banana plantations in Costa Rica, and

recorded a corresponding decrease in ant diversity and even-

ness. Higher ant diversity was attributed to a later succes-

sional stage of habitat and vegetation diversity. Perfecto and

Snelling (1995) also emphasized the importance of vegetation

structural complexity in coffee plantations in Costa Rica along

a decreasing gradient of vegetation diversity, and recorded a

corresponding reduction in diversity and evenness of epigeic

ants. Another study demonstrated a 36% and 43% reduction

in average number of ant species per coffee bush on moderate

and non-shaded plantations respectively, compared to tradi-

tional coffee plantations (Perfecto et al., 1997).

Tropical forest conversion to shifting cultivation resulted

in a reduction of ant species richness and abundance in the

Solomon Islands, which was correlated with changes in vege-

tation mass (Greenslade and Greenslade, 1977). Likewise, in

Chiapas, Mexico, MacKay et al. (1991) found slash and burn

techniques reduced ant species richness by half, leaving
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primarily weedy species. The methods used to clear forest for

cultivation were also found to affect the subsequent ant com-

munity composition. Watt et al. (2002) found higher species

richness of canopy and leaf litter ants in tropical forest plan-

tations after partial manual clearance than after complete,

mechanical clearance.

Responses of ants to land conversion in non-tropical envi-

ronments is also consistent. Majer and Beeston (1996) re-

ported clearing for agriculture in Western Australia severely

reduced ant species richness, in a manner second only to

the impacts of road construction. Burbidge et al. (1992) in

heathland vegetation in Western Australia, discovered se-

verely converted sites (i.e., gardens and Eucalyptus/pine plan-

tations) reduced species and genus level richness and

modified functional group composition. In a Mediterranean

ecosystem in Spain, Gomez et al. (2003) recorded predictable

functional group responses to land clearance ranging from

cultivated fields to woodland. Finally, conversion of native

fynbos vegetation to pine plantations in South Africa also re-

duced ant diversity (Donnelly and Giliomee, 1985).

Despite apparently convincing evidence that ants are neg-

atively impacted by land conversion, e.g., an increase in dom-

inance of a few species and decrease in total ant diversity

with land conversion (Samways, 1983; Roth et al., 1994; Per-

fecto and Snelling, 1995) some studies exist to the contrary.

Belshaw and Bolton (1993) surveyed leaf litter ants across a

continuum of disturbance from primary forest, secondary for-

est, and cocoa plantations in Ghana but recorded no signifi-

cant difference in ant species richness or composition.

Similarly, Ewuim et al. (1997) recorded greater ant abundance

in fallow plots than secondary rain forest plots in Nigeria. In

Papua New Guinea, Room (1975) sampled epigeic ants across

seven disturbance habitats in: primary forest, rubber, coffee,

oil palm plantations, kunai grasslands, Eucalyptus savannas,

and urban grasslands. Although the lowest ant diversity was

recorded in urban sites, the highest diversity was recorded at

rubber plantations.

3.4.2. Habitat fragmentation
At the broad scale, fragmented areas are hypothesized to lead

to declines in species populations since fragments contain

subpopulations vulnerable to stochastic perturbations

(Pimm, 1991) and critical landscape scale processes may be

eliminated. At a finer scale, the gradient of physical and biotic

factors near edges can cause dramatic changes in microcli-

mate conditions for ant communities, such as modification

of soil and litter moisture with increased insolation and re-

duced habitat structure (Uhl and Kauffman, 1990), as well

as facilitating the introduction of exotic species (Suarez

et al., 1998).

Ant community response to fragmentation was inconsis-

tent in the studies reviewed. Carvalho and Vasconcelos

(1999) compared twig-dwelling ants between two 100 ha for-

est fragments with two continuous areas of forest in the Ama-

zon and found species richness and abundance to be higher

in continuous forest. Armbrecht and Ulloa-Chacón (2003) sug-

gested ant diversity in dry forest fragments decreases with

increasing intensity of surrounding land use.

In non-tropical habitats in Western Australia, Abensperg-

Traun et al. (1996) found area of the woodland fragment
significantly covaried with the richness of Opportunist and

Subordinate ants; distance to nearest native vegetation af-

fected dominant ant richness. Interestingly, Gibb and Hochuli

(2002) found smaller (64 km2) woodland fragments contained

greater species richness and significantly different ant assem-

blages than larger fragments (P80 km2) in an urban and land-

scape matrix around Sydney, Australia. At a finer taxonomic

resolution, Punttila (1996), working in fragmented boreal for-

ests in southern Finland, recorded modified patterns of ant

dispersal and colony structure among wood ants. Larger frag-

ments were inhabited by the polygynous (colonies with many

queens and large cooperative nests) wood ant species Formica

aquilonia, while the monogynous (one queen and one nest)

species F. rufa and F. lugubris inhabited smaller fragments

and forest edges. Similar wood ant patterns were found in for-

est fragments in Poland and Germany (Seifert, 1991; Mabelis,

1994).

In contrast, Kotze and Samways (1999) characterized five

naturally fragmented Afromontane forests by edge and dis-

turbance exerted by fire and grazing. Mean ant species rich-

ness did not differ significantly between forest fragments of

different disturbance. In a study of ants and their host plants

in four fragments and four continuous tropical forest sites in

Brazil, Bruna et al. (2005) recorded no difference in either ant

or plant species richness in fragments. A possible explanation

for this variety of findings is that ant responses likely reflect

complex interactions with other biotic and abiotic factors that

are associated with fragmentation but beyond the scope of

most studies to record. For example, the response of higher

trophic level invertebrates, such as spiders, might affect the

response of ants (Gibb and Hochuli, 2002).

3.4.3. Assessing the impact of climate change
Increases in CO2 and other greenhouse gases in the atmo-

sphere are anticipated to cause detrimental changes to the

environment (Barnett et al., 2005; Pounds et al., 2006). More

specifically, research is needed to provide a foundation for

understanding, monitoring, and forecasting the impacts of cli-

mate variability and change on biodiversity. Ants, because of

their ecological dominance, are prime candidates for such

long-term monitoring. We suggest that a select number of

abundant species be included in the design of monitoring ef-

forts established for this purpose, organized across regional

or national scales to capture multiple sites and habitats. The

utility of sampling easily located, abundant species, rather

than rare species, has also been suggested by other research-

ers (Samways, 1994; Armbrecht and Ulloa-Chacón, 2003).

4. Discussion

We have outlined five areas where ants can provide valuable

information for land managers and suggested appropriate

sampling methods. Despite the plethora of studies that have

recorded the response of ants to management techniques or

ecological disturbance, generalizations are difficult to draw.

The diversity of sampling and analysis methods, combined

with variations in spatial and temporal scales and environ-

mental conditions make comparisons difficult.

In designing a monitoring framework, careful consider-

ation needs to be given to the measure of ant response used.
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Whereas species richness and abundance are among the

most common measures (e.g., Abensperg-Traun et al., 1996;

King et al., 1998; Andersen et al., 2003), they do not necessar-

ily signal a response to perturbations in the ecosystem. Spe-

cies richness in disturbed sites can remain at pre-

disturbance levels as less adaptable, shade preferring species

are replaced by species tolerant of higher temperatures and

more open conditions (Bestelmeyer and Wiens, 2001; Kalif

et al., 2001). Similarly, diversity indices which include rich-

ness and evenness (e.g., Shannon or Simpson’s indices) can

also be misleading, as they lose important information such

as species identity and vary in sensitivity to rare and domi-

nant species (Magurran, 1988; Noss, 1990; Duelli and Obrist,

2003). The use of species–accumulation or rank–abundance

diagrams are useful for visualizing differences between dis-

turbed and undisturbed habitats; the shapes and slopes of

these types of plots will often reflect responses to disturbance

and provide more information than diversity indices. The saf-

est approach is to retain detailed information on community

composition and record abundance of individual species,

however, the tradeoffs with post-collection processing need

to be considered.

Consideration also needs to be given to spatial and tempo-

ral scale factors that influence the response of ants, particu-

larly to disturbances. Ideally, the response measured should

be similar at multiple spatial scales to permit a predictive

understanding of communities (Andersen, 1997). In practice,

however, this is challenging for two reasons. First, popula-

tions of ant communities vary naturally over small distances

(Campbell and Tanton, 1981); consequently, the response re-

corded at one scale may not necessarily translate to another.

Moreover, this background spatial variation can obscure

detection of disturbance related responses (e.g., natural sea-

sonal variability was found to exert a stronger effect on ant

responses than did burn effect, Hoffmann, 2003; Majer,

1984b). To address background variation, studies need to

incorporate sufficient replication of disturbed and reference

sites and ideally acquire pre-disturbance data to establish

the composition of the ant community.

Another critical spatial consideration in ecological distur-

bance studies concerns the position of the disturbance in

the landscape and the matrix of surrounding land use. Roth

et al. (1994) noted that ant diversity recorded in agricultural

sites was mediated by proximity to primary forest, which pro-

vided a source of ants for recolonization. Perfecto and Snel-

ling (1995) also acknowledged that surrounding matrix is

important: sampling in cocoa plantations bordered by pri-

mary forest with higher ant diversity might have an influence.

A further consideration is how representative the disturbance

studied is to the genuine disturbance; whether, for example,

studying a logged area considerably smaller than that created

by a typical logging operation would adequately reflect the

same impacts (Vasconcelos et al., 2000). Furthermore, many

of the passive techniques described focus on epigeic ants,

leaving the effect of disturbance on ants that prefer other

habitats, such as arboreal or hypogeic, unknown (Majer

et al., 2001). Longino and Colwell (1997), however, noted that

Malaise traps worked surprisingly well for capturing canopy

ants, suggesting they either fall from the canopy or walk

down as long distance foragers.
An important consideration relating to temporal scale is

the time after the disturbance that ant sampling was con-

ducted. Hoffmann and Andersen (2003) concluded that most

species that increased after a disturbance exhibited a bell-

shaped curve of response; higher ant species richness and

diversity are associated with intermediate levels of distur-

bance which increases heterogeneity in the environment (Le-

vin and Paine, 1974; Pickett and White, 1985). For example,

Abensperg-Traun et al. (1996) showed the number of total

ants to be greatest at moderate levels of disturbance in Euca-

lyptus fragments, Bestelmeyer and Wiens (1996) documented

greatest species richness at moderate levels of grazing in the

Argentine Chaco (in the summer-wet season), while Bisevac

and Majer (1999) recorded greater species richness in mine

rehabilitation sites at mid-succession of recovery. Conse-

quently, an important consideration for land managers is that

results and conclusions will vary depending on which point

along this curve ants are sampled, underlining the impor-

tance of conducting monitoring activities over a sufficiently

long time to capture these variations. At a finer temporal

scale, the seasonal timing of sampling can determine the re-

sponse of ants to a disturbance; food supply and physical con-

ditions affect reproduction and thus variations in ant

populations (Hölldobler and Wilson, 1990).

5. Conclusion

Ants provide a valuable component to any monitoring frame-

work. This is not, as often suggested, because they represent

reliable ‘indicators’ (which, given the variation exhibited in

the studies reviewed, would be difficult to justify) but because

they provide high information content about a keystone tax-

on present in many ecosystems. Ants are ubiquitous, abun-

dant, and ecologically important, and also easy to collect.

Evaluating ant responses at the species level has become

increasingly feasible in regions such as North America and

Madagascar, where web-based identification tools (such as

www.antweb.org) can help pinpoint geographic variations in

morphology. Alternatively, many studies suggest that classifi-

cations at scales coarser than species level can yield useful

generalizations with a minimum of prior experience and

greatly reduced effort. Nonetheless, in most cases an ant spe-

cialist is required to establish a successful monitoring

program.

There is still a great need, however, to improve tools to

synthesize broadscale monitoring programs. All monitoring

efforts are faced with the challenge of archiving, integrating,

and visualizing monitoring data with multi-dimensional and

multi-scale spatial data. To accomplish this at a regional or

national level requires a system of data storage that moves

away from the single user to an open, distributed sharing of

information. One approach to solve this problem is to develop

web-based tools to archive and fuse spatial and temporal data

from disparate sources.

We have outlined five areas in which ants can be incor-

porated into monitoring as well as suggestions of appropri-

ate techniques for sampling them. However, the design of a

monitoring framework must go beyond simply surveying

ant communities and be concretely tied into an adaptive

management framework in which ants are sampled across

http://www.antweb.org
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a continuum of management practices and responses are

used to inform hypotheses about the ecosystem in

question.
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